
CHAPTER 2

Independent random variables

2.1. Product measures

Definition 2.1. Let µi be measures on (Ωi,Fi), 1≤ i ≤ n. Let F =F1⊗. . .⊗Fn be the
sigma algebra of subsets ofΩ :=Ω1×. . .×Ωn generated by all “rectangles” A1×. . .×An
with Ai ∈Fi. Then, the measure µ on (Ω,F ) such that µ(A1 × . . .× An)=∏n

i=1µi(Ai)
whenever Ai ∈Fi is called a product measure and denoted µ=µ1 ⊗ . . .⊗µn.

The existence of product measures follows along the lines of the Caratheodary
construction starting with the π-system of rectangles. We skip details, but in the
cases that we ever use, we shall show existence by a much neater method in Propo-
sition 2.8. Uniqueness of product measure follows from the π−λ theorem because
rectangles form a π-system that generate the σ-algebra F1 ⊗ . . .⊗Fn.

Example 2.2. Let Bd ,md denote the Borel sigma algebra and Lebesgue measure
on Rd . Then, Bd =B1 ⊗ . . .⊗B1 and md =m1 ⊗ . . .⊗m1. The first statement is clear
(in fact Bd+d′ =Bd ⊗Bd′ ). Regarding md , by definition, it is the unique measure for
which md(A1 × . . .× An) equals

∏n
i=1 m1(Ai) for all intervals Ai. To show that it is

the d-fold product of m1, we must show that the same holds for any Borel sets Ai.
Fix intervals A2, . . . , An and let S := {A1 ∈B1 : md(A1 × . . .× An)=∏n

i=1 m1(Ai)}.
Then, S contains all intervals (in particular the π-system of semi-closed intervals)
and by properties of measures, it is easy to check that S is a λ-system. By the π−λ
theorem, we get S =B1 and thus, md(A1×. . .×An)=∏n

i=1 m1(Ai) for all A1 ∈B1 and
any intervals A2, . . . , An. Continuing the same argument, we get that md(A1 × . . .×
An)=∏n

i=1 m1(Ai) for all Ai ∈B1.

The product measure property is defined in terms of sets. As always, it may be
written for measurable functions and we then get the following theorem.

Theorem 2.3 (Fubini’s theorem). Let µ=µ1⊗µ2 be a product measure on Ω1×Ω2
with the product σ-algebra. If f :Ω→ R+ is either a non-negative r.v. or integrable
w.r.t µ, then,

(1) For every x ∈ Ω1, the function y → f (x, y) is F2-measurable, and the func-
tion x →

∫
f (x, y)dµ2(y) is F1-measurable. The same holds with x and y

interchanged.

(2)
∫

Ω
f (z)dµ(z)=

∫

Ω1

(
∫

Ω2

f (x, y)dµ2(y)

)

dµ1(x)=
∫

Ω2

(
∫

Ω1

f (x, y)dµ1(x)

)

dµ2(y).

PROOF. Skipped. Attend measure theory class. ■

Needless to day (self: then why am I saying this?) all this goes through for finite
products of σ-finite measures.
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Infinite product measures: Given (Ωi,Fi,µi), i = 1,2, . . ., let Ω :=Ω1×Ω2× . . . and
let F be the sigma algebra generated by all finite dimensional cylinders A1 × . . .×
An ×Ωn+1 ×Ωn+2 . . . with Ai ∈Fi. Does there exist a “product measure” µ on F?

For concreteness take all (Ωi,Fi,µi) = (R,B,ν). What measure should the prod-
uct measure µ give to the set A×R×R× . . .? If ν(R) > 1, it is only reasonable to set
µ(A ×R×R× . . .) to infinity, and if ν(R) < 1, it is reasonable to set it to 0. But then
all cylinders will have zero measure or infinite measure!! If ν(R) = 1, at least this
problem does not arise. We shall show that it is indeed possible to make sense of
infinite products of Thus, the only case when we can talk reasonably about infinite
products of measures is for probability measures.

2.2. Independence

Definition 2.4. Let (Ω,F ,P) be a probability space. Let G1, . . . ,Gk be sub-sigma
algebras of F . We say that Gi are independent if for every A1 ∈ G1, . . . , Ak ∈ Gk, we
have P(A1 ∩ A2 ∩ . . .∩ Ak)=P(A1) . . .P(Ak).

Random variables X1, . . . , Xn on F are said to be independent if σ(X1), . . . ,σ(Xn)
are independent. This is equivalent to saying that P (Xi ∈ Ai i ≤ k)=

∏k
i=1 P(Xi ∈ Ai)

for any Ai ∈B(R).
Events A1, . . . , Ak are said to be independent if 1A1 , . . . ,1Ak are independent.

This is equivalent to saying that P(A j1 ∩ . . .∩ A j# ) = P(A j1 ) . . .P(A j# ) for any 1 ≤
j1 < j2 < . . .< j# ≤ k.

In all these cases, an infinite number of objects (sigma algebras or random vari-
ables or events) are said to be independent if every finite number of them are inde-
pendent.

Some remarks are in order.
(1) As usual, to check independence, it would be convenient if we need check

the condition in the definition only for a sufficiently large class of sets. How-
ever, if Gi =σ(Si), and for every A1 ∈ S1, . . . , Ak ∈ Sk if we have P(A1∩ A2∩
. . .∩ Ak) = P(A1) . . .P(Ak), we cannot conclude that Gi are independent! If
Si are π-systems, this is indeed true (see below).

(2) Checking pairwise independence is insufficient to guarantee independence.
For example, suppose X1, X2, X3 are independent and P(Xi =+1) = P(Xi =
−1)= 1/2. Let Y1 = X2X3, Y2 = X1X3 and Y3 = X1X2. Then, Yi are pairwise
independent but not independent.

Lemma 2.5. If Si are π-systems and Gi = σ(Si) and for every A1 ∈ S1, . . . , Ak ∈ Sk if
we have P(A1 ∩ A2 ∩ . . .∩ Ak)=P(A1) . . .P(Ak), then Gi are independent.

PROOF. Fix A2 ∈ S2, . . . , Ak ∈ Sk and set F1 := {B ∈ G1 : P(B∩ A2 ∩ . . .∩ Ak) =
P(B)P(A2) . . .P(Ak)}. Then F1 ⊃ S1 by assumption and it is easy to check that F1
is a λ-system. By the π-λ theorem, it follows that F1 = G1 and we get the assump-
tions of the lemma for G1,S2, . . . ,Sk. Repeating the argument for S2, S3 etc., we get
independence of G1, . . . ,Gk. ■

Corollary 2.6. (1) Random variables X1, . . . , Xk are independent if and only if
P (X1 ≤ t1, . . . , Xk ≤ tk)=

∏k
j=1 P(X j ≤ t j).

(2) Suppose Gα, α ∈ I are independent. Let I1, . . . , Ik be pairwise disjoint subsets
of I. Then, the σ-algebras F j =σ

(
∪α∈I j Gα

)
are independent.
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(3) If Xi, j , i ≤ n, j ≤ ni, are independent, then for any Borel measurable fi :
Rni →R, the r.v.s f i(Xi,1, . . . , Xi,ni ) are also independent.

PROOF. (1) The sets (−∞, t] form a π-system that generates B(R). (2) For j ≤ k,
let S j be the collection of finite intersections of sets Ai, i ∈ I j. Then S j are π-systems
and σ(S j)=F j. (3) Follows from (2) by considering Gi, j :=σ(Xi, j) and observing that
f i(Xi,1, . . . , Xi,k) ∈σ(Gi,1 ∪ . . .∪Gi,ni ). ■

So far, we stated conditions for independence in terms of probabilities if events. As
usual, they generalize to conditions in terms of expectations of random variables.

Lemma 2.7. (1) Sigma algebras G1, . . . ,Gk are independent if and only if for
every bounded Gi-measurable functions Xi, 1≤ i ≤ k, we have, E[X1 . . . Xk]=∏k

i=1 E[Xi].
(2) In particular, random variables Z1, . . . , Zk (Zi is an ni dimensional random

vector) are independent if and only if E[
∏k

i=1 f i(Zi)]=
∏k

i=1 E[ f i(Zi)] for any
bounded Borel measurable functions fi :Rni →R.

We say ‘bounded measurable’ just to ensure that expectations exist. The proof
goes inductively by fixing X2, . . . , Xk and then letting X1 be a simple r.v., a non-
negative r.v. and a general bounded measurable r.v.

PROOF. (1) Suppose Gi are independent. If Xi are Gi measurable then
it is clear that Xi are independent and hence P(X1, . . . , Xk)−1 = PX−1

1 ⊗
. . .⊗PX−1

k . Denote µi := PX−1
i and apply Fubini’s theorem (and change of

variables) to get

E[X1 . . . Xk] c.o.v=
∫

Rk

k∏

i=1
xid(µ1 ⊗ . . .⊗µk)(x1, . . . , xk)

Fub=
∫

R
. . .

∫

R

k∏

i=1
xidµ1(x1) . . .dµk(xk)

=
k∏

i=1

∫

R
udµi(u) c.o.v=

k∏

i=1
E[Xi].

Conversely, if E[X1 . . . Xk]=∏k
i=1 E[Xi] for all Gi-measurable functions Xis,

then applying to indicators of events Ai ∈Gi we see the independence of the
σ-algebras Gi.

(2) The second claim follows from the first by setting Gi :=σ(Xi) and observing
that a random variable Xi is σ(Zi)-measurable if and only if X = f ◦Zi for
some Borel measurable f :Rni →R.

■

2.3. Independent sequences of random variables

First we make the observation that product measures and independence are
closely related concepts. For example,
An observation: The independence of random variables X1, . . . , Xk is precisely the
same as saying that P ◦ X−1 is the product measure PX−1

1 ⊗ . . .⊗PX−1
k , where X =

(X1, . . . , Xk).
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Consider the following questions. Henceforth, we write R∞ for the countable
product space R×R× . . . and B(R∞) for the cylinder σ-algebra generated by all fi-
nite dimensional cylinders A1 × . . .× An ×R×R× . . . with Ai ∈B(R). This notation is
justified, becaue the cylinder σ-algebra is also the Borel σ-algebra on R∞ with the
product topology.
Question 1: Given µi ∈ P (R), i ≥ 1, does there exist a probability space with inde-
pendent random variables Xi having distributions µi?
Question 2: Given µi ∈ P (R), i ≥ 1, does there exist a p.m µ on (R∞,B(R∞)) such
that µ(A1 × . . .× An ×R×R× . . .)=∏n

i=1µi(Ai)?
Observation: The above two questions are equivalent. For, suppose we answer the
first question by finding an (Ω,F ,P) with independent random variables Xi :Ω→ R

such that Xi ∼ µi for all i. Then, X :Ω→ R∞ defined by X (ω) = (X1(ω), X2(ω), . . .) is
measurable w.r.t the relevant σ-algebras (why?). Then, let µ :=PX−1 be the pushfor-
ward p.m on R∞. Clearly

µ(A1 × . . .× An ×R×R× . . .) = P (X1 ∈ A1, . . . , Xn ∈ An)

=
n∏

i=1
P(Xi ∈ Ai)=

n∏

i=1
µi(Ai).

Thus µ is the product measure required by the second question.
Conversely, if we could construct the product measure on (R∞,B(R∞)), then we

could take Ω = R∞, F = B(R∞) and Xi to be the ith co-ordinate random variable.
Then you may check that they satisfy the requirements of the first question.

The two questions are thus equivalent, but what is the answer?! It is ‘yes’, of
course or we would not make heavy weather about it.

Proposition 2.8 (Daniell). Let µi ∈P (R), i ≥ 1, be Borel p.m on R. Then, there exist
a probability space with independent random variables X1, X2, . . . such that Xi ∼µi.

PROOF. We arrive at the construction in three stages.
(1) Independent Bernoullis: Consider ([0,1],B,m) and the random vari-

ables Xk : [0,1]→R, where Xk(ω) is defined to be the kth digit in the binary
expansion of ω. For definiteness, we may always take the infinite binary ex-
pansion. Then by an earlier homework exercise, X1, X2, . . . are independent
Bernoulli(1/2) random variables.

(2) Independent uniforms: Note that as a consequence, on any probability
space, if Yi are i.i.d. Ber(1/2) variables, then U := ∑∞

n=1 2−nYn has uniform
distribution on [0,1]. Consider again the canonical probability space and
the r.v. Xi, and set U1 := X1/2+ X3/23 + X5/25 + . . ., U2 := X2/2+ X6/22 + . . .,
etc. Clearly, Ui are i.i.d. U[0,1].

(3) Arbitrary distributions: For a p.m. µ, recall the left-continuous inverse
Gµ that had the property that Gµ(U) ∼ µ if U ∼ U[0,1]. Suppose we are
given p.m.s µ1,µ2, . . .. On the canonical probability space, let Ui be i.i.d
uniforms constructed as before. Define Xi := Gµi (Ui). Then, Xi are inde-
pendent and Xi ∼ µi. Thus we have constructed an independent sequence
of random variables having the specified distributions. ■

Sometimes in books one finds construction of uncountable product measures too.
It has no use. But a very natural question at this point is to go beyond independence.
We just state the following theorem which generalizes the previous proposition.
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Theorem 2.9 (Kolmogorov’s existence theorem). For each n ≥ 1 and each 1 ≤
i1 < i2 < . . . < in, let µi1,...,in be a Borel p.m on Rn. Then there exists a unique proba-
bility measure µ on (R∞,B(R∞)) such that

µ(A1 × . . .× An ×R×R× . . .)=µi1,...,in (A1 × . . .× An) for all n ≥ 1 and all Ai ∈B(R),

if and only if the given family of probability measures satisfy the consistency condition

µi1,...,in (A1 × . . .× An−1 ×R)=µi1,...,in−1 (A1 × . . .× An−1)

for any Ak ∈B(R) and for any 1≤ i1 < i2 < . . .< in and any n ≥ 1.


